An Investigation of Scale-Resolving Turbulence Models for Supersonic Retropropulsion Flows
An Investigation of Scale-Resolving Turbulence Models for Supersonic Retropropulsion Flows
Blog Article
Characterization of unsteady loads is critical for the development of control systems for next-generation air vehicles.Both Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) methods are prohibitively expensive, and existing Reynolds-Averaged Navier-Stokes (RANS) approaches have been shown to be inadequate in predicting both mean and unsteady loads.In recent years, biomat for sale scale-resolving methods, such as Partially Averaged Navier-Stokes (PANS) and Detached Eddy Simulation (DES), have been gaining acceptance and filling the gap between RANS and LES.In this study, we focus on a new variant of the PANS method, namely blended PANS or BPANS, which was shown to perform truvisionhealthftp.com well in the incompressible regime for both wall-bounded and free shear flows.
In this paper, we extend BPANS to compressible supersonic flows by adding a compressibility correction, leading to a new model called BPANS CC.The new model is tested using a well-known supersonic mixing layer case, and the results show good agreement with experimental data.The model is then used on a complex supersonic retropropulsion case and the results are in good agreement with experimental data.